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We have derived the mathematical relationship between the coefficient of variation associated with repeated
measurements from quantitative assays and the expected fraction of pairs of those measurements that differ
by at least some given factor, i.e., the expected frequency of disparate results that are due to assay variability
rather than true differences. Knowledge of this frequency helps determine what magnitudes of differences can
be expected by chance alone when the particular coefficient of variation is in effect. This frequency is an
operational index of variability in the sense that it indicates the probability of observing a particular disparity
between two measurements under the assumption that they measure the same quantity. Thus the frequency or
probability becomes the basis for assessing if an assay is sufficiently precise. This assessment also provides a
standard for determining if two assay results for the same subject, separated by an intervention such as
vaccination or infection, differ by more than expected from the variation of the assay, thus indicating an
intervention effect. Data from an international collaborative study are used to illustrate the application of this
proposed interpretation of the coefficient of variation, and they also provide support for the assumptions used
in the mathematical derivation.

Although assay variability is well recognized as pertinent to
the interpretation of quantitative bioassays such as the en-
zyme-linked immunosorbent assay (ELISA), few tools that link
assay precision with interpretation of results are readily avail-
able. In our investigations, we have expanded on previous
studies that evaluated the relationship between assay precision
and the capabilities and limitations of a given assay system. In
this article we develop a simple procedure to determine the
probability that an assay will accurately discern whether two
samples have the same analyte concentration or not based on
a knowledge of the assay variability as measured by the coef-
ficient of variation (CV).

In many laboratories, the variability of the ELISA and other
methods of chemical assay that produce continuous-type val-
ues is summarized not by the standard deviation (SD) but by
the CV, which is defined as the SD divided by the mean, with
the result often reported as a percentage. The main appeal of
the CV is that the SDs of such assays generally increase or
decrease proportionally as the mean increases or decreases, so
that division by the mean removes it as a factor in the variabil-
ity. The CV is therefore a standardization of the SD that allows
comparison of variability estimates regardless of the magni-
tude of analyte concentration, at least throughout most of the
working range of the assay.

In serological assays a twofold difference in measurements
of the same sample has been widely regarded as the upper limit
on acceptable variability, and the frequency of such differences
among pairs of repeated measurements has been proposed as
an apt index for assay variability (5). Wood (4) showed the

mathematical relationship between that frequency and the size
of the SD of repeated assay measurements, under the assump-
tion that the logarithm of measurements is normally distrib-
uted. The tables he provided indicate how small an SD of the
log measurements must be in order to ensure that only some
predetermined fraction of pairs of measurements differ by a
factor of two or more. Wood’s formulation was a valuable link
between the precision of titration assays and an operational
assessment of assay performance.

As expressed above, in the context of serum assays and other
applications the CV may be preferred over SD as a measure of
precision, but there is no published formulation that links the
CV to assay performance in a manner analogous to Wood’s
treatment of the SD in the log scale. Such a formulation would
be even more useful if it were to generalize from twofold to
k-fold disparities in replicate measurements (where k can be
any number greater than one and arbitrarily close to one). This
generalization would take advantage of the fact that ELISAs
and other assays with continuous scales are capable of mea-
suring a continuous range of differences in samples, unlike
classic titration assays utilizing step-wise, usually twofold, serial
dilutions. The intent of this article is to introduce the mathe-
matical relationship between the CV and the frequency of
k-fold or more-disparate assay values when the same sample is
subjected to repeated measurements. We also demonstrate
how this relationship can be used to address practical problems
in a clinical laboratory.

MATERIALS AND METHODS

The probability that two independent measurements from the same sample
will differ by a factor of k or more is derived in Appendix A under the assumption
that assay values are lognormally distributed, i.e., that they are normally distrib-
uted after a logarithmic transformation. This assumption is supported by the fact
that calibration and resultant measurement errors usually take place in a loga-
rithmic scale (1). The derived formula is the basis for the construction of a
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nomogram that plots the probabilities for a range of values of CV and k. A
partial estimation, by Monte Carlo simulation methods, of the distribution of the
number of twofold disparate pairs among n replicates is undertaken in Appendix
B. The resulting table (see Table 2) is proposed for use in monitoring the quality
and consistency of the laboratory assay process. Use of the formula and Table 2
is illustrated by their application to data from an international collaborative study
of ELISA methods to quantify human serum antibodies against Bordetella per-
tussis antigens (3). In that study assays on 21 serum samples were performed by
33 laboratories. For the purpose of comparing levels of assay precision among
laboratories, each laboratory conducted 15 repeated measurements on each
sample, and these measurements were the basis for the CV estimates and vari-
ability assessments made in this article. The large number of replicates per
sample in the study enabled an additional use of these data: to compare the
actual number of k-fold disparate pairs with the number predicted by the derived
formula. Computation and graphs were accomplished with Statistical Analysis
System (SAS Institute, Cary, N.C.) and S-Plus (Insightful Corporation, Cam-
bridge, Mass.) software.

RESULTS

For a specified value of the CV for a given assay the prob-
ability that two replicate measurements differ by a factor k or
more is given by equation A4 of Appendix A, restated here:

p�k� � 2�� �loge �k�

�2loge (CV2 � 1)� (1)

For example, the frequency of replicates that differ by 10%
or more (so that k � 1.1) from an ELISA with a CV of 15% is
calculated as

p(1.1) � 2� � �loge (1.1)

�2loge [(15/100)2 � 1]� � 0.88 (2)

Alternatively, p(k) for k values of 1.5, 2, 3, and 4 may be
obtained from the nomogram of Fig. 1, which graphs the prob-
ability on curves specific to these values of k.

Equation A5 of Appendix A gives the CV that is associated
with a specified frequency, and this value may also be approx-
imated by inspection of the nomogram. Obtaining values of the
CV this way may be helpful as an exercise to view how the CV
corresponds to some hypothetically varied values of k and p(k),
but note that, in clinical laboratory settings, it may not be

possible to dramatically reduce the assay variability, i.e., the
CV, by manipulation of assay conditions, apart from radical
changes in assay materials and procedures. Due to this prac-
tical immutability, the CV will usually serve as a given quantity,
and equation A4 will usually be the relevant formula for re-
lating CV, k, and p(k).

Equation A4 allows for the restatement of the CV in a
metric, p(k), that bears an operational meaning familiar to
researchers investigating infectious disease pathology and im-
munology. In some vaccine clinical trials, for example, the
fraction of trial participants whose serum antibody concentra-
tions increase by more than twofold from baseline after vacci-
nation may be taken as an indicator of the vaccine’s immuno-
genicity and a surrogate of its efficacy. The choice of a twofold
increase (which is equivalent to a difference of 0.301 in the
log10 scale) is a convention that reflects the belief that a lesser
change is probably due not to an actual increase in concentra-
tion but to random error. Knowledge of the CV of the assay
under these conditions and application of the formula permit
calculation of the likelihood of random twofold increases. The
belief in the rarity of twofold increases may now be subject to
verification. As an example, we refer to the assays quantifying
antibodies against pertactin from one of the laboratories, lab-
oratory A, that participated in the international collaborative
ELISA study. As seen in Table 1, of the 21 serum samples, this
laboratory measured 19 with a CV under 20%. The Table 1
results are presented in order of the geometric mean concen-
trations of the samples and so reveal that the two CVs that
exceed 20% are associated with low levels of analyte, which
approached the method’s limit of detection. The high CVs at
these levels demonstrate the expected loss of precision when
quantifying samples at the extreme ends of the assay’s range.
We generalize, then, that the CV in the working range for this
laboratory will not exceed 20%. By application of the formula,
we determine that for an assay with a CV of 20% there will be
1.3% random twofold changes, half of which will be increases.
Thus, in a trial of 200 participants with baseline and postvac-
cination pertactin levels assayed by laboratory A, no more than
one or two participants will be expected to have a twofold
increase, if there is no vaccine effect on antibody levels. The
null hypothesis of that trial would be that the portion of two-
fold increases does not exceed 0.7%. On the other hand, if the
assay were less precise, say with a CV of 30%, the expected
number of twofold random increases would be about 10. The
null hypothesis would be that the percentage of twofold in-
creases does not exceed p(2)/2 or 4.7%. Knowledge of the CV
and its interpretation through p(k) is in this way helpful in
setting the null hypothesis for vaccine clinical trials or other
seroconversion studies to account for random outcomes not
related to the intervention under investigation.

A second benefit of linking the CV and the frequency of
k-fold disparate pairs is the ability to monitor a laboratory’s
performance with respect to what is expected according to its
assumed CV. If a laboratory has established that it performs a
certain assay with known precision and if random error is the
only anticipated source of difference in assays, such as among
replicate measurements of the same sample, then too many
k-fold differences in pairs of measurements would signal the
presence of outliers or some divergence from the assay proce-
dure with which the CV is associated. The definition of “too

FIG. 1. Nomogram for relating the CV to the probability that two
assay measurements from the same analyte sample will differ by a
factor k or more.
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many” may be arbitrarily set, and for our purposes we define
“too many differences,” consistent with the hypothesis testing
convention, as any number of differences that occur with a tail
probability of 0.05 or less. Table 2 displays estimates of the
upper 5% tails of the distribution of the number of twofold
disparate pairs among n replicates (n � 2,. . ., 15) for various
assumed values of CV. This table was constructed, as detailed
in Appendix B, from a very large number of simulations of
lognormally distributed assay values and is applicable to any
lognormal data regardless of mean, variance, or measurement
units. The entries are critical values, and observations that
exceed them constitute statistical evidence that the actual CV
may be higher than assumed. To illustrate the use of Table 2,
we refer again to laboratory A. It is established that its per-
tactin assay CV should not exceed 20%. In a subsequent run of
10 replicates on a sample, there are 45 ways to make pairs.
Suppose that six of those pairs differed by at least twofold.

From Table 2, for a CV of 20% and an n of 10, the critical
value is 4, and the occurrence of 6 alerts the observer that some
factor may have interfered with the normal conduct of the
assay.

The high number of replicates produced by the laboratories
in the collaborative study presented the opportunity to discern
how well the derived p(k) fits actual data. For this demonstra-
tion, data from laboratory B (Table 1) were included with
those from laboratory A. Laboratory B was selected to contrast
with A since it displayed more difficulty with the samples in
terms of variability. All but one CV exceeded 20%, and the
estimated percentage of twofold disparate pairs associated
with the CVs was greater than 10% for more than one-half of
the samples. (Sample 10 is excluded from consideration in the
last sentence because all of its measurements were below the
limit of detection and, by the analysis protocol, they were
assigned a value of one-half the limit. Since they all then had
the same value, the SD and CV were both zero. A CV of zero
is an indicator of assay limitation and not a true measure of
variability.)

For the 15 replicates per sample there were 105 possible
pairings, and the predicted number of k-fold disparate pairs
among them is 105 � p(k). The data from the two selected
laboratories were examined to determine the number of pairs
that differed by a factor k of 2 or more, and the predicted
numbers of such pairs were calculated (Table 1). Here p(k) is
not known exactly because it is based on the CV, which must be
estimated from the data, so that the predicted number itself is
subject to some random variation. Nevertheless, for both lab-
oratories there was good correspondence between predicted
and observed frequencies for the vast majority of samples. The
exceptions are, from Laboratory B, samples 16 and 18, which
fall in the lower range of amount of analyte. The high level of
agreement between observed and predicted numbers offers
some validation of the use of equation A4 and of the lognor-
mality assumption upon which it is based.

DISCUSSION

The development of the relationship between the CV and
p(k), the probability of k-fold or more differences in two assays

TABLE 1. Variability summary

Laboratory Sample
Geometric

mean
(U/ml)

CV
(%)

Pairs differing by twofold or more

Predicted
frequency

(p[2])

No.

Predicted Observed

A 10 0.2 51.9 0.315 33 32
11 0.2 34.4 0.143 13 10
16 1.2 11.8 0.000 0 0
4 1.4 14.3 0.001 0 0
12 3.2 19.6 0.012 1 0
18 4.2 15.6 0.002 0 0
2 6.2 15.7 0.002 0 0
1 13.0 11.0 0.000 0 0
17 15.3 12.0 0.000 0 0
8 15.7 12.8 0.000 0 0
19 18.3 8.1 0.000 0 0
3 18.4 9.5 0.000 0 0
7 18.8 10.0 0.000 0 0
14 24.6 10.4 0.000 0 0
21 26.4 10.7 0.000 0 0
13 26.9 9.4 0.000 0 0
6 29.8 12.8 0.000 0 0
20 51.4 17.0 0.004 0 0
15 73.0 11.2 0.000 0 0
9 253.5 15.7 0.002 0 0
5 1,133.8 18.7 0.008 1 0

B 10 4.0 0.0 0.000 0 0
11 4.8 53.9 0.332 35 36
18 6.0 39.1 0.193 20 56
4 6.4 69.7 0.436 46 54
16 8.3 53.4 0.328 34 54
12 19.3 35.2 0.151 16 10
8 19.7 28.7 0.081 9 6
2 21.7 52.2 0.318 33 29
21 21.9 21.3 0.020 2 1
17 23.2 21.1 0.019 2 5
13 33.5 37.7 0.179 19 18
3 38.7 29.2 0.087 9 4
19 41.8 25.6 0.052 5 2
1 42.8 41.2 0.215 23 22
6 44.8 40.2 0.206 22 31
7 45.4 38.2 0.185 19 19
20 48.4 30.5 0.101 11 7
14 68.1 40.3 0.206 22 18
15 83.7 19.9 0.013 1 1
9 348.7 27.9 0.073 8 4
5 1,450.9 21.9 0.023 2 2

TABLE 2. 5% Critical values for number of twofold disparate pairs

No. of
replicates

No. of
pairs

5% critical valuea for a CV (%) of:

14 16 18 20 22 24 26 28 30 35 40 45 50

2 1 1 1 1 1 1 1
3 3 1 1 1 1 2 2 2 2 3 3 3 3 3
4 6 1 1 1 2 2 3 3 3 4 4 4 5 5
5 10 1 1 1 2 3 3 4 4 5 5 6 7 7
6 15 1 1 2 2 3 4 5 5 6 7 8 9 10
7 21 1 1 2 3 4 5 6 6 7 9 11 12 13
8 28 1 1 2 3 4 6 7 8 9 11 13 15 16
9 36 1 2 3 4 5 7 8 9 10 13 16 18 19

10 45 1 2 3 4 6 7 9 11 12 16 19 21 24
11 55 1 2 3 5 7 9 11 12 14 19 22 25 28
12 66 1 2 3 5 7 10 12 14 16 21 26 30 33
13 78 1 2 4 6 8 11 13 16 19 25 30 34 38
14 91 1 2 4 6 9 12 15 18 21 28 34 39 43
15 105 1 3 4 7 10 13 17 20 23 31 38 44 49

a If the number of observed pairs equals or exceeds the table value, the null
hypothesis that the CV is at most the indicated value is rejected.
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of the same sample, enhances the usefulness in clinical labo-
ratory work of the CV, which has two advantages over the SD.
First, as noted earlier, the CV is dimensionless and therefore
does not vary with changes in measurement units. In a similar
fashion, p(k) is the same regardless of the base of the logarithm
by which the original values are transformed; equation A4,
which uses the natural logarithm, is universally applicable.
Thus, if other statistical analysis requires a logarithm, chosen
for convenience or even arbitrarily, other than the natural
logarithm, p(k) is unaffected and always calculated the same
way. This property of invariance contrasts with the probabilis-
tic interpretation of the SD, which differs with choice of loga-
rithm base. Second, although equation A4 is predicated on the
assumption that assay values are lognormally distributed, the
CV is the ratio of the SD to the mean of the original values,
and correspondingly p(k) refers to ratios of the original values.
Thus the interpretation of variability is always in terms of
original values. On the other hand, Wood’s system, founded on
the SD, requires the SD to be calculated from the transformed
assay values and is dependent on which logarithm base is used.

We have presented two important applications of the for-
mulation that links CV and p(k): (i) to assess whether or not
the difference between two paired measurements is due to
random variation and (ii) to assess whether the variation in a
set of replicates is larger than that implied by the assumed CV.
For both applications the starting point is the assumption of
values for k and CV. For the first application p(k) denotes how
likely it is that two assay values from samples with the same
analyte concentration will differ by the factor k or more. A p(k)
of 0.05, for example, suggests that such a difference is suffi-
ciently infrequent when the concentrations are equal that its
occurrence provides support for the conclusion that the con-
centrations are not the same. It is assumed that the concen-
trations are equal unless the difference between paired assay
values is large (i.e., greater than or equal to k-fold) and un-
likely [i.e., with probability p(k) or lower] under the assump-
tion of equality. This is a familiar type of inference that is the
basis for the use of the p value in testing hypotheses of no
difference. If the assays differ by less than k, it may be con-
cluded that their difference is due to assay variability and not to
an actual difference between the samples. Paired samples from
an individual are commonly obtained in different phases of a
clinical illness or before and after a medical intervention, such
as immunization, and k represents the criterion for change or
treatment effect.

The second application is as a quality control tool through
which the laboratory may determine if the current assay vari-
ability exceeds what has been established from past perfor-
mance. This may also be accomplished by a simple F test that
compares the variance of log-transformed replicates with the
assumed variance, which is calculated by equation A3 from the
assumed CV. However, the proposed method of counting two-
fold disparate pairs and referring the result to Table 2 translates
the process into language familiar to vaccine and immunology
research and therefore may convey a better understanding of the
magnitude of the departure from expectation.

Particular properties of the variables CV and k must be kept
in mind when applying equation A4. In clinical research the
variable k is a fixed quantity, set by the investigator based on
knowledge of the biological relevance of differences between

measurements. The choice of k may also be made to optimize
the sensitivity and specificity of diagnostic tests by employing k
as a cutoff. In other settings k could be selected not to make
clinical judgements but to monitor laboratory performance.
Here, a natural choice of k would be one that maximizes
differences between CV in the range of interest. Inspection of
Fig. 1 shows that the p(k) curve for a k of 4 is essentially zero
in the range of CVs less than 40%; thus monitoring the fre-
quency of fourfold differences among replicate measurements
would not readily differentiate between CVs below 40%. On
the other hand, a k of 1.5 or 2 visually separates CVs between
10 and 90% very well. CVs expected to fall below 10% would
require an assignment of k closer to 1.0. Apart from the issue
of differentiating the CV, there is flexibility in the selection of
k. However, it would be desirable for the sake of comparability
among laboratories to have laboratories in specific research areas
conform to some consensus, if possible, on the choice of k.

The CV is never exactly known and must be estimated from
appropriate validation studies. Such studies will typically pro-
vide a range of estimates of intra-assay, interassay, and com-
bined variability on serum samples which cover the working
range of analyte concentrations. The following should be kept
in mind in determining the value of CV to use in equation A4.
(i) Intra-assay and interassay comparisons require different
CVs. (ii) The values anticipated for the test samples may in-
fluence which CV to use, because, even though the CV is for
the most part independent of the mean value, values toward
the extremes of the working range tend to display higher CVs.
(iii) Since the CV is estimated and has a distribution of its own,
it may be prudent in some applications to employ not the point
estimate but rather a more conservative estimate such as an
upper percentile of the observed distribution of the CV.

In this article we have outlined some ways to use the preci-
sion of an assay, as measured by the CV, after the precision has
been established from validation studies. Equation A4, the
nomogram, and the critical-value table are simple tools that
extend the understanding of the CV and increase its usefulness
in study design, laboratory procedures, and interpretation of
diagnostic results.

APPENDIX A

Let X and Y represent two independent assay values from the same
sample. They have positive values with common mean �, variance �2,
and CV 	 (��/�). We assume that logb (X) and logb (Y) are normally
distributed with mean 
 and variance �2, where b is the base of the
logarithm. The probability that X and Y differ by a factor k (k � 1) or
more is denoted by p(k), and

p�k� � P�Y/X � k or X/Y � k� � 2P�Y/X � k� (A1)

due to symmetry in X and Y. Since the condition Y/X � k implies the
inequality logb(Y) � logb(X) � logb(k) and since the left side of this
inequality is normally distributed with mean of 0 and variance of 2�2,
we have from equation A1

p�k� � 2� �� logb�k�

��2 � (A2)

where � is the cumulative standard normal distribution function.
Lindgren (2) showed the relationships between (�, �2) and (
, �2):

� � exp �
loge �b� �
�2

2 loge �b��2� (3)

and
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�2 � exp �2
loge �b� � �2loge �b��2�exp ��2loge �b��2� � 1� (4)

so that

	 �
�

�
� �exp ��2loge �b��2� � 1 (5)

We solve for �:

� �
�loge �	2 � 1�

loge �b�
(A3)

Substituting for � in equation A2 gives

p�k� � 2�� � loge �k�

�2loge �	2 � 1�� (A4)

For 	 in terms of k and p(k) � p we have

	 � �exp � log2
e �k�

2��1�p/2��2� � 1 (A5)

APPENDIX B

For n replicates drawn from the same lognormal distribution as
defined in Appendix A, there are nC2 possible ways to make pairs. Let
D be the number of these pairs that differ by at least a factor k. For n
� 2, D may assume only the values 0 and 1, with P(D � 1) � p(k) and
P(D � 0) � 1 � p(k). For n � 2 the analytical derivation of the
probability distribution of D is complicated by the fact that the pairs
are not statistically independent of each other, e.g., the behavior of the
pair (a,b) is related to the behavior of the other pairs that contain
measurements a or b, so that the sum of k-fold disparate pairs does not
follow the binomial distribution. We resort, then, to a Monte Carlo
estimation of the distribution of D when k � 2.

Fix n and CV. From equation A3, the SD � of a log-transformed
replicate is determined by the CV. Since the CV does not depend at all
on the mean 
, the mean is assigned some arbitrary value. A set of n
pseudorandom normal variates with mean 
 and variance �2 is gener-
ated, and their antilogs are computed. The nC2 pairs are created, and

D, the number of twofold disparate pairs, is determined. This process
is repeated 50,000 times, and a frequency distribution of values of D
emerges. This result is the Monte Carlo estimate of the distribution of
D for the specified n and CV. Since the principal interest is in the
extreme values of D, the upper 5% tail (i.e., the largest value of D
whose tail probability estimate does not exceed 0.05) of the distribu-
tion is given in Table 2. The accuracy of this tail, or critical value, is
reflected in the fact that the expected number of values of D that occur
in this tail is 50,000 � 0.05 � 2,500, so that the half-width of the
confidence interval on the tail probability is 1.96(0.05 � 0.95)1/2/50 �
0.0085, indicating 95% confidence of estimating the probability within
1%. The discreteness of the distribution guarantees that the probabil-
ity will usually be less than 0.05, so that confidence that the critical
value won’t have a tail probability in excess of 0.05 is increased. The
results of this simulation are displayed in Table 2 for various values of
CV and n � 2,.., 15. This range should be adequate because labora-
tories rarely, due to resource limitations, run more than 15 replicates.
The complete frequency distributions, the Statistical Analysis System
computer program, and details of this simulation will be provided by
the authors on request.
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